#ILMathCom

Illinois Assessment of Readiness

Heather Brown
February 28, 2019

We will be on at 3:15 to check mics and cameras
Illinois Assessment of Readiness

• Pearson will be the IAR administration vendor for 2019.

• New Meridian will provide the test content/forms for the next two years to ensure compatibility and continuity through the transition.
 • Test Blueprint and Maps coming soon

• The agency will continue to use 100% PARCC content and forms built to the standard of the PARCC assessments for the next two years.
Illinois Assessment of Readiness

- As information becomes available, it will be posted on the ISBE IAR website: www.isbe.net/Pages/IAR.aspx
Illinois Assessment of Readiness

- Information on IAR Administration
 - https://il.mypearsonsupport.com/ (This site is live.)
Illinois Assessment of Readiness

State Test Window, schools may shorten:

• Online Test Administration: March 11 - April 26
 • Manuals and scripts for read-aloud accommodations will arrive by March 6.

• Paper Test Administration: March 25 - April 26
 • Paper test administration material will arrive in district between March 13 and March 18.

• There will be no extension of the windows due to weather.
Illinois Assessment of Readiness

• The spring 2019 Pearson Access Next (PAN) live and training sites are operational.

• District/School staff will be able to proctor cache on Monday, March 4.
 • Proctor caching for Mac is available. Contact Wes Bruce at wbruce@isbe.net or Pearson “Level 2” support.

• District/School staff will be able to prepare sessions from March 7 through April 26.
Illinois Assessment of Readiness

• Practice Test Site is Available/Active:
 https://trng.pearsonaccessnext.com/customer/index.action

• Practice Tests:
 https://parcc.pearson.com/practice-tests/

• Released Items:
 https://parcc-assessment.org/released-items/

• Training Modules:
 https://parcc.pearson.com/training-modules/

• Practice Test Site is Available/Active:
 https://trng.pearsonaccessnext.com/customer/index.action
Both Grade 6 and Grade 7 math will have two sections in unit 1 calc and non-calc
Same Standards, Same Content, Improved Administration 2019 // PHASE ONE

The Illinois Assessment of Readiness is a federally required measure of student mastery of the Illinois Learning Standards in English language arts and mathematics in grades 3 through 8 — and their readiness for what’s next.

What

Students, families, and schools will experience essentially no difference in the assessment this year.

The Illinois Assessment of Readiness measures the same standards and includes the same high-quality test questions used the last four years. Using the same content and measuring the same standards ensures comparability from year to year — an essential commitment to including growth in our support.

When

The online assessment window tentatively opens March 11. For the fewer than 10 percent of schools in the state using paper exams, the assessment window opens March 25, due to the logistics of printing and shipping paper. Schools using paper exams will receive the test materials March 18. The assessment window statewide closes April 26.

Why

The improvements to come to the Illinois Assessment of Readiness administration in the next few years reflect active partnership with educators and practitioners to make the assessment even more useful for improving student outcomes. It will provide the option of bringing all accountability assessments onto a single administration and management platform, and will maintain comparability throughout all changes. (See full timeline of changes below.)

How

ISBE has two contracts for the Illinois Assessment of Readiness — one for content and one for administration. Illinois’ existing contract with New Meridian provides the assessment’s high-quality PARCC content. A one-year contract with Pearson will provide the 2019 administration. The vendor for future administration is pending procurement resolution.
Sample Letter to Families

ISBE has created a sample letter to support your communications to families about the Illinois Assessment of Readiness. The test has a new name, shorter length, and other important changes coming in the next few years.

We encourage you to download the sample letter below in the language(s) appropriate for your families, personalize on your letterhead, and distribute to your school communities.

We have prepared the sample letter in seven languages to reach more than 80 percent of Illinois families in their native language.

Download the Illinois Assessment of Readiness sample letter to families:

- ENGLISH
- ARABIC
- URDU
- CHINESE

English

Spanish

Polish

Tagalog

For students in grades 3-8, IAR measures the same math and literacy standards with the same types of question while reducing testing time by one-third.

Illinois' accountability assessments provide critical information for educators at the State to give more support and resources to the student in the greatest need.

IAR assessments in English Language Arts and Mathematics will be administered to all students in grades 3-8.

- Illinois Assessment of Readiness: Same Standards, Same Content, Improved Administration

Manuscripts & Technology

Test Information & Resources

- Pearson Resource Page for IAR Administration
- Schedule of Units and Testing Times

SAMPLE PARENT LETTER

- English
- Spanish
- Arabic
- Chinese
- Polish
- Tagalog
- Urdu
Dear Parents and Guardians,

Our students take federally required assessments every spring. These assessments help us understand how our students are growing academically, compared to their peers across the state. The state uses this information to provide more support and resources to the schools in the greatest need. This year, the English language arts and math assessment for grades 3-8 is called the Illinois Assessment of Readiness.

The Illinois Assessment of Readiness is almost exactly the same this year as the assessment that students took last year, only slightly shorter. The Illinois Assessment of Readiness measures the same Illinois Learning Standards and includes the same high-quality test questions that teachers and students have become familiar with over the past four years.

Our students should feel confident showing what they know and can do on the Illinois Assessment of Readiness, even with the new test name and new look.

The Illinois Assessment of Readiness will change over the next few years, as the state works to make it more useful to schools and families. Next year, we will have the results back from the test much more quickly. The year after that, the test will adapt to each student, so we gain a better understanding of where each individual student is in their learning. We will continue to be able to measure students’ growth from year to year throughout these improvements.

[IF TESTING DATES ARE SET] Our students will take the Illinois Assessment of Readiness on [DATE(S)].

[IF TESTING DATE/WINDOW IS NOT SET] Illinois Assessment of Readiness testing occurs statewide in March and April. We will announce our district’s testing dates in a few weeks.

If you have questions about the Illinois Assessment of Readiness, please reach out to [contact] at [phone] or [email]. As always, we encourage our students to do their best every day. Thank you for your partnership in your student’s academic success.
Assessment Update Webinar Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Scheduled Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, March 01, 08, 15, 22, 29, 2019</td>
<td>10 a.m. - 11 a.m.</td>
</tr>
<tr>
<td>Friday, April 05, 12, 19, 26, 2019</td>
<td>10 a.m. - 11 a.m.</td>
</tr>
</tbody>
</table>
Contacts

ISBE Assessment & Accountability
866-317-6034
assessment@isbe.net
www.isbe.net/Pages/Assessment.aspx

<table>
<thead>
<tr>
<th>Pearson (IAR Assistance)</th>
<th>SIS Helpdesk</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Phone: 833-213-3879</td>
<td>• Phone: 217-558-3600 (option 3)</td>
</tr>
<tr>
<td>• Web: https://il.mypearsonsupport.com/</td>
<td>• Web: www.isbe.net/Pages/Student-Information-System.aspx</td>
</tr>
</tbody>
</table>

Join the ISBE assessment Listservs!
• Assessment Listserv: Send a blank email with “SUBSCRIBE” in the subject line to assessment@isbe.net.
• Technology Point-of-Contact Listserv: Send a blank email with “SUBSCRIBE” in the subject line to egrauke@isbe.net.
Informational Guide
https://parcc-assessment.org/mathematics/

Grade 6 Math
Summative Assessment
Claims Structure*: Grade 6

Master Claim: On-Track for college and career readiness. The degree to which a student is college and career ready (or “on-track” to being ready) in mathematics. The student solves grade-level/course-level problems in mathematics as set forth in the Standards for Mathematical Content with connections to the Standards for Mathematical Practice.

Sub-Claim A: Major Content1 with Connections to Practices
The student solves problems involving the Major Content1 for her grade/course with connections to the Standards for Mathematical Practice.

Sub-Claim B: Additional & Supporting Content2 with Connections to Practices
The student solves problems involving the Additional and Supporting Content2 for her grade/course with connections to the Standards for Mathematical Practice.

Sub-Claim C: Highlighted Practices MP.3,6 with Connections to Content3 (expressing mathematical reasoning)
The student expresses grade/course-level appropriate mathematical reasoning by constructing viable arguments, critiquing the reasoning of others, and/or attending to precision when making mathematical statements.

Sub-Claim D: Highlighted Practice MP.4 with Connections to Content (modeling/application)
The student solves real-world problems with a degree of difficulty appropriate to the grade/course by applying knowledge and skills articulated in the standards for the current grade/course (or for more complex problems, knowledge and skills articulated in the standards for previous grades/courses), engaging particularly in the Modeling practice, and where helpful making sense of problems and persevering to solve them (MP.1), reasoning abstractly and quantitatively (MP.2), using appropriate tools strategically (MP.5), looking for and making use of structure (MP.7), and/or looking for and expressing regularity in repeated reasoning (MP.8).

1 For the purposes of the PARCC Mathematics assessments, the Major Content in a grade/course is determined by that grade level’s Major Clusters as identified in the PARCC Model Content Frameworks v.3.0 for Mathematics. Note that tasks on PARCC assessments providing evidence for this claim will sometimes require the student to apply the knowledge, skills, and understandings from across several Major Clusters.

2 The Additional and Supporting Content in a grade/course is determined by that grade level’s Additional and Supporting Clusters as identified in the PARCC Model Content Frameworks v.3.0 for Mathematics.

3 For Grades 3-8, Sub-Claim C includes only Major Content.

*Updated July 2015 to reflect new point totals
Overview of PARCC Mathematics Task Types

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Description</th>
<th>Reporting Categories</th>
<th>Scoring Method</th>
<th>Mathematical Practice(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Conceptual understanding, fluency, and application</td>
<td>Sub-claim A: Solve problems involving the major content for the grade level
Sub-claim B: Solve problems involving the additional and supporting content for the grade level</td>
<td>Computer-scored only</td>
<td>Can involve any or all mathematical practice standards</td>
</tr>
<tr>
<td>Type II</td>
<td>Written arguments/justifications, critique of reasoning, or precision in mathematical statements</td>
<td>Sub-claim C: Express mathematical reasoning by constructing mathematical arguments and critiques</td>
<td>a mix of computer-scored and hand-scored tasks</td>
<td>Primarily MP.3 and MP.6, but may also involve any of the other practices</td>
</tr>
<tr>
<td>Type III</td>
<td>Modeling/application in a real-world context or scenario</td>
<td>Sub-claim D: solve real-world problems engaging particularly in the modeling practice</td>
<td>a mix of computer-scored and hand-scored tasks</td>
<td>Primarily MP.4, but may also involve any of the other practices</td>
</tr>
</tbody>
</table>
Evidence Statement Keys

Evidence statements describe the knowledge and skills that an assessment item/task elicits from students. These are derived directly from the Common Core State Standards for Mathematics (the standards), and they highlight the advances of the standards, especially around their focused coherent nature. The evidence statement keys for grades 3 through 8 will begin with the grade number. High school evidence statement keys will begin with “HS” or with the label for a conceptual category. Together, the five different types of evidence statements described below provide the foundation for ensuring that PARCC assesses the full range and depth of the standards which can be downloaded from http://www.corestandards.org/Math/.

An Evidence Statement might:

1. **Use exact standard language** – For example:
 8.EE.1 - Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^5 = 3^7 = 1/3^3 = 1/27$. This example uses the exact language as standard 8.EE.1

2. **Be derived by focusing on specific parts of a standard** – For example: 8.F.5-1 and 8.F.5-2 were derived from splitting standard 8.F.5:
 - 8.F.5-1 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear).
 - 8.F.5-2 Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

 Together these two evidence statements are standard 8.F.5:
 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or 2 decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

3. **Be integrative (Int)** – Integrative evidence statements allow for the testing of more than one of the standards on a single item/task without going beyond the standards to create new requirements. An integrative evidence statement might be integrated across all content within a grade/course, all standards in a high school conceptual category, all standards in a domain, or all standards in a cluster. For example:
 - Grade/Course – 4.Int.2\(^5\) (Integrated across Grade 4)
 - Conceptual Category – F.Int.1\(^5\) (Integrated across the Functions Conceptual Category)
 - Domain – 4.NBT.Int.1\(^5\) (Integrated across the Number and Operations in Base Ten Domain)
 - Cluster – 3.NF.A.Int.1\(^5\) (Integrated across the Number and Operations – Fractions Domain, Cluster A)
4. **Focus on mathematical reasoning**— A reasoning evidence statement (keyed with C) will state the type of reasoning that an item/task will require and the content scope from the standard that the item/task will require the student to reason about. For example:

- **3.C.2** — Base explanations/reasoning on the relationship between addition and subtraction or the relationship between multiplication and division.
 - Content Scope: Knowledge and skills are articulated in 3.OA.6
- **7.C.6.1** — Construct, autonomously, chains of reasoning that will justify or refute propositions or conjectures.
 - Content Scope: Knowledge and skills are articulated in 7.RP.2

Note: When the focus of the evidence statement is on reasoning, the evidence statement may also require the student to reason about securely held knowledge from a previous grade.

5. **Focus on mathematical modeling**— A modeling evidence statement (keyed with D) will state the type of modeling that an item/task will require and the content scope from the standard that the item/task will require the student to model about. For example:

- **4.D.2** — Solve multi-step contextual problems with degree of difficulty appropriate to Grade 4 requiring application of knowledge and skills articulated in 3.OA.A, 3.OA.B, 3.NBT, and/or 3.MD.

Note: The example 4.D.2 is of an evidence statement in which an item/task aligned to the evidence statement will require the student to model on grade level, using securely held knowledge from a previous grade.

- **HS.D.5** — Given an equation or system of equations, reason about the number or nature of the solutions.
 - Content scope: A-REI.11, involving any of the function types measured in the standards.
<table>
<thead>
<tr>
<th>Sustain</th>
<th>Evidence Statement Key</th>
<th>Evidence Statement Text</th>
<th>Clarifications, limits, emphases, and other information intended to ensure appropriate variety in tasks</th>
<th>Relationship MPs</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6.C.1.1</td>
<td>Base explanations/reasoning on the properties of operations.</td>
<td>i) Tasks should not require students to identify or name properties</td>
<td>MP-3, MP-6, MP-7</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.2</td>
<td>Base explanations/reasoning on the relationship between addition and subtraction or the relationship between multiplication and division.</td>
<td></td>
<td>MP-2, MP-3, MP-4, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.3</td>
<td>Base arithmetic explanations/reasoning on concrete referents such as diagrams (whether provided in the prompt or constructed by the student in her response), connecting the diagrams to a written (symbolic) method.</td>
<td></td>
<td>MP-2, MP-3, MP-4, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.4</td>
<td>Base explanations/reasoning on a number line diagram (whether provided in the prompt or constructed by the student in her response).</td>
<td></td>
<td>MP-3, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.5</td>
<td>Base explanations/reasoning on a coordinate plane diagram (whether provided in the prompt or constructed by the student in her response).</td>
<td></td>
<td>MP-3, MP-4, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.6</td>
<td>Given an equation, present the solution steps as a logical argument that concludes with a solution.</td>
<td>i) Tasks do not require students to write an equation or inequality.</td>
<td>MP-3, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.7</td>
<td>Construct, autonomously, chains of reasoning that will justify or refute propositions or conjectures.</td>
<td></td>
<td>MP-3, MP-6</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>6.C.8.1</td>
<td>Present solutions to multi-step problems in the form of valid chains of reasoning, using symbols such as equals signs appropriately (for example, no division less than line for the presence or nonsense statements such as $1 + 4 = 5 + 7 = 12$, even if the final answer is correct), or identify or describe errors in solutions to multi-step problems and present corrected solutions.</td>
<td>i) Expectations for ratios in this grade are limited to ratios of non-complex fractions. The initial numerator and denominator should be whole numbers.</td>
<td>MP-2, MP-3, MP-6</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Grade 6 Assessment Policies

Calculators:

- PARCC mathematics assessments allow a four-function calculator with square root and percentage functions in Grade 6.
- For students who meet the guidelines in the PARCC Accessibility Features and Accommodations Manual for a calculation device, this accommodation allows a calculation device to be used on the non-calculator section of any PARCC mathematics assessment. The student will need a hand-held calculator because an online calculator will not be available. If a student needs a specific calculator (e.g., large key, talking), the student can also bring his or her own, provided it is specified in his or her approved IEP or 504 Plan and meets the same guidelines.

Additionally, schools must adhere to the following additional guidance regarding calculators:
- No calculators with Computer Algebra System (CAS) features are allowed.
- No tablet, laptop (or PDA), or phone-based calculators are allowed during PARCC assessments.
- Students are not allowed to share calculators within a testing session.
- Test administrators must confirm that memory on all calculators has been cleared before and after the testing sessions.
- Calculators with “QWERTY” keyboards are not permitted.
- If schools or districts permit students to bring their own hand-held calculators for PARCC assessment purposes, test administrators must confirm that the calculators meet PARCC requirements as defined above.

Rulers and Protractors:

- Rulers are used on the Grade 6 PARCC Assessments.
- For computer-based assessments, the grade-appropriate ruler and protractor is provided through the computer-based platform.
- For paper-based assessments, rulers and protractors are included in the PARCC-provided materials that are shipped to schools/districts.
- Schools are not allowed to provide their own rulers and protractors for Grade 6 PARCC assessments.

To practice with the computer-based rulers and protractors, please visit the PARCC Practice Test at http://practice.parcc.testnav.com/.
Grade 6 ruler provided on the PARCC paper-based mathematics assessments (not actual size):

Grade 6 protractor provided on the PARCC paper-based mathematics assessments (not actual size):

Scratch Paper (required):
- Blank scratch paper (graph, lined or un-lined paper) is intended for use by students to take notes and work through items during testing. If graph paper is used during instruction, it is recommended that schools provide graph paper as scratch paper for mathematics units. At least one sheet of scratch paper per unit must be provided to each student. Any work on scratch paper will not be scored.
Mathematics Reference Sheet:

- Students in grade 6 will be provided a reference sheet with the information shown below. Notice that the names of the measurement formulas provided on the reference sheet only include the name of the figure or object to which the measurement formula(s) is applied. The intent of the Common Core State Standards in Mathematics at grades 6 is to know and apply the measurement formulas. In order for students to be able to choose the correct formula, they will need to know the formula.

<table>
<thead>
<tr>
<th>Reference Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inch = 2.54 centimeters</td>
</tr>
<tr>
<td>1 meter = 39.37 inches</td>
</tr>
<tr>
<td>1 mile = 5280 feet</td>
</tr>
<tr>
<td>1 mile = 1760 yards</td>
</tr>
</tbody>
</table>

1 cup = 8 fluid ounces
1 pint = 2 cups
1 quart = 2 pints
1 gallon = 4 quarts

- Students in grade 6 will be required to know relative sizes of measurement units within one system of units. Therefore, the following requisite knowledge is necessary for the grade 6 assessments and is not provided in the reference sheet.

<table>
<thead>
<tr>
<th>Measurement Unit</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter = 100 centimeters</td>
<td>1 foot = 12 inches</td>
</tr>
<tr>
<td>1 meter = 1000 millimeters</td>
<td>1 yard = 3 feet</td>
</tr>
<tr>
<td>1 kilometer = 1000 meters</td>
<td>1 day = 24 hours</td>
</tr>
<tr>
<td>1 kilogram = 1000 grams</td>
<td>1 minute = 60 seconds</td>
</tr>
<tr>
<td>1 liter = 1000 milliliters</td>
<td>1 hour = 60 minutes</td>
</tr>
</tbody>
</table>

The formulas for the area of a rectangle are also considered to be requisite knowledge because the intent of the Common Core State Standards in Mathematics for students in grade 6 is to have a conceptual understanding of area of rectangles.

<table>
<thead>
<tr>
<th>Area of a Rectangle</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular Prism</td>
<td>(V = Bh) or (V = lwh)</td>
</tr>
<tr>
<td>Area of a Rectangle</td>
<td>(A = lw) or (A = bh)</td>
</tr>
</tbody>
</table>
Lessons Learned from PARCC

- Integrated Problems
- Reasoning (Practice Standard 3)
- Modeling (Practice Standard 4)
- Multiple Select
- Multiple Parts
Students with Valid Scores (74)

Purpose: This report presents the average percent correct by Evidence Statement for school, district and state.
This report shows the operational Evidence Statements for the given grade and subject sorted by difficulty.

MATHEMATICS

Grade 5 Assessment, 2018–2019

<table>
<thead>
<tr>
<th>Difficulty Order Most to Least</th>
<th>Evidence Statement</th>
<th>Common Core State Standard(s)</th>
<th>Domain</th>
<th>Item Type</th>
<th>School Student Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.C.2-3</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>5.C.8-2</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>5.C.2-2</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5.C.5-3</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5.C.2</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>5.NF.8-2</td>
<td>5.NF.B.6</td>
<td>Number & Operations–Fractions</td>
<td>Math - Type II</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5.C.2-4</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5.MD.1-2</td>
<td>5.MD.A.1</td>
<td>Measurement & Data</td>
<td>Math - Type I</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>5.MD.1-1</td>
<td>5.MD.A.1</td>
<td>Measurement & Data</td>
<td>Math - Type I</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>5.C.4</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>5.C.1</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>5.NBT.7-4</td>
<td>5.NBT.B.7</td>
<td>Number & Operations in Base Ten</td>
<td>Math - Type I</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>5.G.4</td>
<td>5.G.B.4</td>
<td>Geometry</td>
<td>Math - Type I</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>5.D.1</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type III</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>5.Int.1</td>
<td>5.NBT.B.5</td>
<td>Number & Operations in Base Ten</td>
<td>Math - Type I</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>5.NBT.A.Int.1</td>
<td>5.NBT.A.2 5.NBT.A.3 5.NBT.A.4</td>
<td>Number & Operations in Base Ten</td>
<td>Math - Type I</td>
<td>63</td>
</tr>
<tr>
<td>17</td>
<td>5.C.4</td>
<td>OGL</td>
<td>Modeling and Reasoning</td>
<td>Math - Type II</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>5.NF.1-4</td>
<td>5.NF.A.1</td>
<td>Number & Operations–Fractions</td>
<td>Math - Type I</td>
<td>28</td>
</tr>
<tr>
<td>19</td>
<td>5.NBT.2-2</td>
<td>5.NBT.A.2</td>
<td>Number & Operations in Base Ten</td>
<td>Math - Type I</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>5.MD.3</td>
<td>5.MD.B.3</td>
<td>Measurement & Data</td>
<td>Math - Type I</td>
<td>35</td>
</tr>
</tbody>
</table>
Evidence Statement Analysis Report Limitations

- Does not give results for each specific test item; the results are based on groups or clusters of standards
- General results not individual student or subgroup results
- Does not show percentage scores or number of test items
- Evidence Statement Analysis report is only one measure of student performance with regard to curriculum and standards taught
How Evidence Statements and Tables can be used to Inform Instruction

- Use PARCC reports to review evidence tables. Use student performance and mastery of standards.
- Review of the standards and determine what it looks like in the curriculum framework and instruction.

District, School and Student level Data, Subgroup Data, Item Analysis using Evidence Statements.

Curriculum, Instruction, Framework, Formative Assessment, Data, and Reflection.
These formative assessment probes were created by the ISBE Content Specialists using PARCC released items.

5.NBT.3
5.NF.2
5.OA.3
Name ________________

Numbers Base Ten (S.NBT.3)

Which of these is equal to 63.041?

<table>
<thead>
<tr>
<th>Statement</th>
<th>Yes or No</th>
<th>Explain your thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eighty-three and forty-one tenths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8 \times 10 + 3 \times 1 + 4 \times \frac{1}{10} + 1 \times \frac{1}{100})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighty-three and forty-one hundredths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8 \times 10 + 3 \times 1 + 4 \times \frac{1}{100} + 1 \times \frac{1}{1000})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighty-three and forty-one thousandths</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Reveal student thinking
- Reveal misconceptions
- Students see multiple answers that could be correct.
- Watch Formative Assessment #ILMathCom for more info
Released Items: https://parcc-assessment.org/released-items

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Entity ID</th>
<th>Task Type</th>
<th>Evidence Statement</th>
<th>Sub-Claims</th>
<th>Forms Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Online Paper ACC</td>
</tr>
<tr>
<td>1</td>
<td>VH174082</td>
<td>Type 1</td>
<td>5.OA.3</td>
<td>B</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>2</td>
<td>M01120</td>
<td>Type 1</td>
<td>5.NF.1-1</td>
<td>A</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>3</td>
<td>M01511</td>
<td>Type 1</td>
<td>5.NBT.1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>VH084810</td>
<td>Type 2</td>
<td>5.C.2-1</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>VH120211</td>
<td>Type 1</td>
<td>5.NF.6-2</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>M04017</td>
<td>Type 1</td>
<td>5.NF.2-1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>VF908148</td>
<td>Type 1</td>
<td>5.Int.2</td>
<td>A</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>8</td>
<td>M00329P</td>
<td>Type 1</td>
<td>5.G.4</td>
<td>B</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>0110-M00573</td>
<td>Type 1</td>
<td>5.NF.2-1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>M00154</td>
<td>Type 1</td>
<td>5.NBT.3b</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>4123-M03565</td>
<td>Type 1</td>
<td>5.MD.5c</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>M03345P</td>
<td>Type 1</td>
<td>5.NF.3-1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>VH061948</td>
<td>Type 1</td>
<td>5.NF.4a-1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>M03454</td>
<td>Type 1</td>
<td>5.NBT.5</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>VH141466</td>
<td>Type 3</td>
<td>5.D.1</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>4072-M03328</td>
<td>Type 1</td>
<td>5.NBT.Int.1</td>
<td>A</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>17</td>
<td>VF563097</td>
<td>Type 1</td>
<td>5.NF.1-1</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>4054-M03251</td>
<td>Type 2</td>
<td>5.C.1-1</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>M500148</td>
<td>Type 1</td>
<td>5.NBT.7-3</td>
<td>A</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

Grade 5
24.

Part A

The number lines represent the amount of blue and red paint a student mixes together to make purple paint.

What is the total amount of purple paint, in quarts, the student makes?

- A. \(\frac{8}{15} \)
- B. \(\frac{12}{15} \)
- C. \(\frac{12}{18} \)
- D. \(\frac{8}{18} \)

Part B

The student has \(\frac{2}{3} \) quart of yellow paint in a container. The student uses \(\frac{1}{2} \) quart of the yellow paint to make green paint.

- How many quarts of yellow paint remain in the container after the student makes the green paint?
- Explain how a number line could be used to find your answer.

Enter your answer and your explanation in the space provided.
24.

Part A

The number lines represent the amount of blue and red paint a student mixes together to make purple paint.

<table>
<thead>
<tr>
<th>5.C.5-1</th>
<th>Base explanations/reasoning on a number line diagram (whether provided in the prompt or constructed by the student in her response).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Scope: Knowledge and skills articulated in 5.NF.2</td>
<td></td>
</tr>
</tbody>
</table>

What is the total amount of purple paint, in quarts, the student makes?

- A. \(\frac{8}{15} \)
- B. \(\frac{12}{15} \)
- C. \(\frac{12}{18} \)
- D. \(\frac{8}{18} \)

Part B

The student has \(\frac{2}{3} \) quart of yellow paint in a container. The student uses \(\frac{1}{2} \) quart of the yellow paint to make green paint.

- How many quarts of yellow paint remain in the container after the student makes the green paint?
- Explain how a number line could be used to find your answer.

Enter your answer and your explanation in the space provided.
<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This part of the item includes the following 2 elements.</td>
</tr>
<tr>
<td>2</td>
<td>Student response includes the following 2 elements.</td>
</tr>
</tbody>
</table>

- **Reasoning component** = 1 point
 - Valid explanation of how a number line could be used to find the answer

- **Computation component** = 1 point
 - Correct fraction of yellow paint remaining, \(\frac{1}{6} \) or equivalent

Sample Student Response:

\[
\frac{4}{6} - \frac{3}{6} = \frac{1}{6} \text{ quart remaining yellow paint}
\]

Make a number line from 0 to 1. Divide the number line into 6 equal parts. Then start on the 4\(^{th}\) part and move to the left 3 parts to get the answer of \(\frac{1}{6} \).

Or other valid response.
Anchor Paper 1
Score Point 2

This response receives full credit. It includes each of the two required elements.

- The correct fraction of yellow paint remaining is found ($\frac{1}{6}$).

- Correct explanation of how a number line could be used to find the answer is provided (you can use a number line to find your answer by finding your common denominator between the numbers, in this case its 6, and split the line into that many sections. You can mark a large thick line at the end of 4 sections and then shade in 3 sections. How many sections are left unshaded, not counting those that are outside 4 sections mark? There is one section left unshaded. Leaving your answer to be $\frac{1}{6}$).

Note: The mathematical work shown ($\frac{2}{3} - \frac{1}{2} = \frac{1}{6}$ or $\frac{4}{6} - \frac{3}{6}$ equals $\frac{1}{6}$), is irrelevant when it comes to scoring this item. Credit is awarded for the correct answer and/or for how the answer was found using a number line. Therefore finding the answer through subtraction only will not receive credit.
https://il.mypearsonsupport.com/

meeting the Illinois Learning Standards in English language arts and mathematics.

This site hosts all of the tools necessary for Test Coordinators, Technology Coordinators, and Test Administrators to prepare for and administer assessments.

PearsonAccess

Sign in to PearsonAccess for all administrative tasks for test administration.

Technology Setup

Prepare your system for online assessments.

Resources

Access trainings, manuals, and other resources to prepare for and administer assessments.

Test Preparation

Users can access sample items, TestNav 8 tutorials, and practice tests to prepare for the tests.

Reporting

Access a variety of reporting resources from interpretive guides, to report samples, and file layouts.

Support

Assistance is available via email, chat, or phone.
https://il.mypearsonsupport.com/practice-tests/math/

Assessment is like? A practice test for each grade is available below for you to use to familiarize yourself with the kinds of items and format used for the tests.

Please select your grade level to view practice tests.

- The practice test platforms have a default login of "Guest," however, users can choose to enter a name when they begin. This is for the teacher's reference when printing reports at the end of the scorables practice tests. This information is not captured or maintained in the system. Teachers can assign numerical values to each student as a log in, if it is preferred.
- Paper practice tests can be printed. The material on these tests is non-secure.

Grade 3

Grade 4

Computer-Based Practice Test Unit 1
- Computer Based Unit 1 »
- American Sign Language Unit 1 »
- Spanish Computer Based Unit 1 »

Computer-Based Practice Test Unit 2
- Computer Based Unit 2 »
- American Sign Language Unit 2 »
- Spanish Computer Based Unit 2 »

Computer-Based Practice Test Unit 3
- Computer Based Unit 3 »
- American Sign Language Unit 3 »
- Spanish Computer Based Unit 3 »
Rachana has a set of 10 mugs. The set is made up of three different kinds of mugs.

- $\frac{1}{2}$ of the mugs have pictures on them.
- $\frac{1}{10}$ of the mugs have words on them.
- $\frac{1}{5}$ of the mugs have flowers on them.

Part A

Place the fractions in order, from least to greatest.

1/2 2/5 1/10

<table>
<thead>
<tr>
<th>Least</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greatest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Part B

Enter a fraction equal to $\frac{2}{5}$, with a denominator of 10, to show the fraction of the set of mugs that have words on them.

Enter your answer in the space provided. Enter only your answer.
Tutorials

The purpose of these tutorials is to demonstrate the navigation and tools available for Computer-Based Assessments and the use of the Test Booklet and Answer Documents for Paper-Based Assessments. The items appearing in these tutorials are samples used to allow students and educators to gain familiarity with the technology platform and paper-based format that will be used for IAR assessments.

TestNav 8 Tutorial

This tutorial should be used to familiarize students with how to navigate the TestNav 8 computer-based environment.

Printable Paper-Based Student Tutorials

These printable paper based tutorials will help familiarize students with paper-based assessments.

Equation Editor

These quick reference guides will help familiarize students with how to use the Equation Editor Tool.
There are 19 people going to a picnic in the park. There are 3 tables in the park. Exactly 6 people can sit at each table. Can all 19 people sit at the tables? Explain why or why not.

Enter your answer and your explanation in the space provided. You may use the drawing box to add a drawing to help explain your answer.

\[3 \times 6 = 18 \]
Other Great Resources

- http://www.mathteachersinaction.org/
- https://www.ilteachandtalk.org/
- https://www.illustrativemathematics.org/
Heather Brown - hmbrown2@ilstu.edu
www.mathteachersinaction.org

QUESTIONS
Tools and Resources for

ELA
MATH
Science
Social Science
Social Emotional Learning
Technology
Fine Arts

www.ilclassroomsinaction.org